SCIENTIFIC PAPERS

Cornejo, I. (2024). A New Model for Pressure Drop Correction for Series-Arranged Misaligned Monoliths. Chemical Engineering Science, 120515. https://doi.org/10.1016/j.ces.2024.120515

Chavez-Angel, E., Castro-Alvarez, A., Sapunar, N., Henríquez, F., Saavedra, J., Rodríguez, S., Cornejo, I., Maxwell, L. (2023). Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile. Energies, 16(11), 4509. https://doi.org/10.3390/en16114509

Garreton, G., Maxwell, L., Cornejo, I. (2023). Transition of the Flow Regime inside of Monolith Microchannel Reactors Fed with Highly Turbulent Flow. Catalysts, 13(6), 938. https://doi.org/10.3390/catal13060938

Reinao, C., & Cornejo, I. (2023). A Model for the Flow Distribution in Dual Cell Density Monoliths. Processes, 11(3), 827. https://doi.org/10.3390/pr11030827

Vinnett, L., Cornejo, I., Yianatos, J., Acuña, C., Urriola, B., Guajardo, C., & Esteban, A. (2022). The Correlation between Macroscopic Image and Object Properties with Bubble Size in Flotation. Minerals, 12(12), 1528. https://doi.org/10.3390/min12121528

Vinnett, L., Yianatos, J., Acuña, C., Cornejo, I. (2022). A Method to Detect Abnormal Gas Dispersion Conditions in Flotation Machines. Minerals, 12(2), 125. https://doi.org/10.3390/min12020125

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2022). Heat and mass transfer inside of a monolith honeycomb: From channel to full size reactor scale. Catalysis Today, 383, 110-122. https://doi.org/10.1016/j.cattod.2020.10.036

Cornejo, I. (2021). A Model for Correcting the Pressure Drop between Two Monoliths. Catalysts, 11(11), 1314. https://doi.org/10.3390/catal11111314

Cornejo, I., Garreton, G., & Hayes, R. E. (2021). On the Use of Dual Cell Density Monoliths. Catalysts, 11(9), 1075. https://doi.org/10.3390/catal11091075

Hayes, R. E., & Cornejo, I. (2021). Multi‐scale modelling of monolith reactors: A 30‐year perspective from 1990 to 2020. The Canadian Journal of Chemical Engineering. https://doi.org/10.1002/cjce.24144

Cornejo, I., Hayes R. E. (2021). A Review of the Critical Aspects in the Multi-Scale Modelling of Structured Catalytic Reactors. Catalysts, 11(1), 89. https://doi.org/10.3390/catal11010089

Mesquida, I. M. V., Cornejo, I., Nikrityuk, P., Greiner, R., Votsmeier, M., & Hayes, R. E. (2020). Towards a fully predictive multi-scale pressure drop model for a wall-flow filter. Chemical Engineering Research and Design, 164, 261-280. https://doi.org/10.1016/j.cherd.2020.10.002

Cornejo, I., Nikrityuk, P., Lange, C., & Hayes, R. E. (2020). Influence of upstream turbulence on the pressure drop inside a monolith. Chemical Engineering and Processing-Process Intensification, 147, 107735. https://doi.org/10.1016/j.cep.2019.107735

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2020). Improved Nu number correlations for gas flow in monolith reactors using temperature-dependent fluid properties. International Journal of Thermal Sciences. https://doi.org/10.1016/j.ijthermalsci.2020.106419

Salamon, E., Cornejo, I., Mmbaga, J. P., Kołodziej, A., Lojewska, J., & Hayes, R. E. (2020). Investigations of a three channel autogenous reactor for lean methane combustion. Chemical Engineering and Processing-Process Intensification. https://doi.org/10.1016/j.cep.2020.107956

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2020). Effect of substrate geometry and flow condition on the turbulence generation after a monolith. The Canadian Journal of Chemical Engineering, 98(4), 947-956. https://doi.org/10.1002/cjce.23687

Mesquida, I. M. V., Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2020). Simulation of Flow Patterns in Particulate Filters with Various Viscous Models. Emission Control Science and Technology. https://doi.org/10.1007/s40825-020-00158-y

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2020). The influence of channel geometry on the pressure drop in automotive catalytic converters: Model development and validation. Chemical Engineering Science, 212, 115317. https://doi.org/10.1016/j.ces.2019.115317

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2019). Pressure correction for automotive catalytic converters: A multi-zone permeability approach. Chemical Engineering Research and Design, 147, 232-243. https://doi.org/10.1016/j.cherd.2019.05.017

Cornejo, I., Cornejo, G., Nikrityuk, P., & Hayes, R. E. (2019). Entry length convective heat transfer in a monolith: The effect of upstream turbulence. International Journal of Thermal Sciences, 138, 235-246. https://doi.org/10.1016/j.ijthermalsci.2018.12.044

Cornejo, I., Hayes, R. E., & Nikrityuk, P. (2018). A new approach for the modeling of turbulent flows in automotive catalytic converters. Chemical Engineering Research and Design, 140, 308-319. https://doi.org/10.1016/j.cherd.2018.10.028

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2018). Turbulence generation after a monolith in automotive catalytic converters. Chemical Engineering Science, 187, 107-116. https://doi.org/10.1016/j.ces.2018.04.041

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2018). Multiscale RANS-based modeling of the turbulence decay inside of an automotive catalytic converter. Chemical Engineering Science, 175, 377-386. https://doi.org/10.1016/j.ces.2017.10.004

Cornejo, I., Nikrityuk, P., & Hayes, R. E. (2017). Turbulence decay inside the channels of an automotive catalytic converter monolith. Emission Control Science and Technology, 3(4), 302-309. https://doi.org/10.1007/s40825-017-0070-6

Cornejo, I., Cornejo, G., Ramírez, C., Almonacid, S., & Simpson, R. (2016). Inverse method for the simultaneous estimation of the thermophysical properties of foods at freezing temperatures. Journal of Food Engineering, 191, 37-47. https://doi.org/10.1016/j.jfoodeng.2016.07.003

Navia, D., Villegas, D., Cornejo, I., & de Prada, C. (2016). Real-time optimization for a laboratory-scale flotation column. Computers & chemical engineering, 86, 62-74. https://doi.org/10.1016/j.compchemeng.2015.12.006

Valencia, P., Cornejo, I., Almonacid, S., Teixeira, A. A., & Simpson, R. (2013). Kinetic parameter determination for enzyme hydrolysis of fish protein residue using d-optimal design. Food and Bioprocess Technology, 6(1), 290-296. https://doi.org/10.1007/s11947-011-0628-1